
CrossTalk—July/August 2013 21

25th Anniversary issue

a.	 What function points are
b.	 What SNAP is
c.	 Why SNAP may be important
d.	 How the beta test was conducted
e.	 What the results were
f.	 Areas for future research

Review of the Related Literature
IFPUG is the largest software metric association in the world,

with more than 1,000 members and affiliates in 24 countries.
The non-profit International Software Benchmark Standards
Group (ISBSG) has become the largest source of benchmark
data, with more than 5,000 projects available. New benchmarks
are being added at a rate of perhaps 500 projects per year. All
of the ISBSG data is based on function point metrics [3].

IFPUG maintains arguably the most widely used functional
software sizing metric in the world, the IFPUG “function point”
(in this paper, we will always refer to the unadjusted function
point). The IFPUG Counting Practices Manual [4] is one stan-
dard for measuring functional requirements, and is recognized
by the ISO.

ISO/IEC 20926:2009 specifies the set of definitions, rules
and steps for applying the IFPUG Functional Size Measurement
method. ISO/IEC 20926:2009 is conformant with all mandatory
provisions of ISO/IEC 14143-1:2007. It can be applied to all
functional domains and is fully convertible to prior editions of IF-
PUG sizing methods. … ISO/IEC 20926:2009 can be applied
by anyone requiring a measurement of functional size. Persons
experienced with the method will find ISO/IEC 20926:2009 to
be a useful reference [5].

A function point is like a “chunk” of software. It is similar
in concept to a “square foot” of house size, a “kilometer” of
distance, a “gallon” of gasoline, or a “degree Kelvin” of tempera-
ture. According to IFPUG’s Counting Practices Manual, function
points are assigned to different components of software ac-
cording to the user’s viewpoint (rather than the programmer’s
viewpoint). IFPUG recognizes five different types of software
components, listed in the table below, that are basically mea-
sures of the data flow and storage through the software. Also
listed are their relative sizes in terms of function points and
based on their complexity levels.

Charley Tichenor

Abstract. Sizing software requirements is an essential best practice in software
project management for forecasting the work effort required for software develop-
ment projects (and other related metrics). Arguably, the currently most accurate
software metric for measuring the size of software is the International Function
Point Users Group (IFPUG) “function point,” which has the ISO standard ISO/
IEC 20926:2009. Function points basically measure the size of the data flow and
storage through the software, which we define in this paper as “functional” require-
ments. But function points do not measure other software requirements, which also
require work effort resources. IFPUG has recently completed a successful beta
test of a new method to assess the size of other, “nonfunctional” requirements,
which when used in conjunction with function points should further increase the
accuracy of software forecasting. The authors believe that this Software Non-func-
tional Assessment Process v. 2.0 (SNAP) is ready to enter industry and academia
for initial practice and further research.

A New Software
Metric to
Complement
Function Points
The Software Non-functional
Assessment Process (SNAP)

Introduction
Forecasting the cost to produce software has been trans-

formed from an art into largely a science through a methodology
called function point analysis. Function point analysis basically
quantifies the volume of data flow and storage through the soft-
ware application; based on this measurement the cost required
to develop the software can be quantitatively forecast. Years
of experience with function points has shown it to be a robust
methodology [1]. Yet, one wonders if a complementary software
metric could be developed and used along with function points
so that data flow and storage, and other aspects of the software
that function points do not consider can be measured. Combin-
ing these measurements should improve the quality of software
development cost forecasting (and other software metrics).

One proposed complementary metric is from SNAP. IFPUG,
through its Non-functional Sizing Standards Committee, SNAP
Project Team, developed a procedure for SNAP and wrote the
SNAP “Assessment Practices Manual,” now in version 2.1 [2].
During August and September 2012, the SNAP team conducted
a beta test to measure how well SNAP 2.0 correlated with work
effort. This beta test was successful, and the purpose of this
paper is to share the results of this beta test. We will discuss:

 Low Average High
External Input 3 4 6
External Output 4 5 7
External Inquiry 3 4 6
Internal Logical File 7 10 15
External Interface File 5 7 10

For example, an input screen process for entering data into
an application might be measured as a low complexity external
input worth three function points, and a high complexity external
interface file is counted as 10 function points. The IFPUG
Counting Practices Manual has repeatable standards for how
to count function points and determining whether a component
has low, average, or high complexity.

Table 1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
A New Software Metric to Complement Function Points: The Software
Non-functional Assessment Process (SNAP)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Security Cooperation Agency ,2800 Defense Pentagon
,Washington,DC,20301-2800

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Sizing software requirements is an essential best practice in software project management for forecasting
the work effort required for software development projects (and other related metrics). Arguably, the
currently most accurate software metric for measuring the size of software is the International Function
Point Users Group (IFPUG) ?function point,? which has the ISO standard ISO/ IEC 20926:2009. Function
points basically measure the size of the data flow and storage through the software, which we define in this
paper as ?functional? requirements. But function points do not measure other software requirements,
which also require work effort resources. IFPUG has recently completed a successful beta test of a new
method to assess the size of other, ?nonfunctional? requirements which when used in conjunction with
function points should further increase the accuracy of software forecasting. The authors believe that this
Software Non-functional Assessment Process v. 2.0 (SNAP) is ready to enter industry and academia for
initial practice and further research.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

22 CrossTalk—July/August 2013

25th Anniversary issue

Here is how we can use function points for forecasting the
cost to develop software. First, as an analogy, suppose that a
customer wants to build a new house in a certain community.
Suppose further that a typical house in that community is built
at a cost averaging $300 per square foot. If the customer wants
a new house of 1,000 square feet, then a good estimate of its
cost will be about $300,000. Suppose we are considering build-
ing a new software application. Before we start building it we
want to forecast its cost. A qualified function point analyst starts
by examining the software’s data requirements. Then, using the
standards in the IFPUG Counting Practices Manual, the analyst
counts each instance of the components in Table 1 that are
anticipated to be in the software, and then totals their values for
the final function point count. (adapted from [6]).

This function point size correlates with development cost. The
original paper showing that function point size correlates with
development cost was published in 1977 by Dr. Allan Albrecht
in his paper “Measuring Application Development Productivity
[7].” This paper was the publication of the results of his research
team’s development of the initial version of the function point
methodology at IBM. The team correlated function point size of
various IBM applications with their corresponding work effort,
and found the correlation to be statistically significant. Since the
publication of this paper, numerous organizations have devel-
oped function point-based software productivity models to help
them forecast software development costs. Some companies
have compiled large amounts of such data from government,
industry, and other sources, and built commercial software
estimation tools which use function points and other produc-
tivity indicators (such as software language used, skill of the
programming team, project management tools used, etc.) to help
clients forecast their software development costs.

Now we can forecast the cost to develop this software. Sup-
pose that the function point analyst identified the software’s
components from Table 1 and counted a total of 1,000 function
points. Suppose further that a typical application of this type is
built at a cost averaging $300 per function point. A good esti-
mate of its total development cost is therefore about $300,000.

A reading of the IFPUG Counting Practices Manual indicates
that function points are basically a measure of the size of the
data flow and storage through the software. For this paper, we
define these software requirements as “functional” require-
ments. The cost estimate of $300,000 for developing 1,000
function points of software is based on data flow and storage
size—the functional requirements for the software.

Let us return to our house cost forecasting analogy. A new
house of 1,000 square feet in size in this Community should
typically cost about $300,000, but the particular house design
this customer wants is a little different than “typical.” Suppose
that this customer also wants to add hardwood floors (instead of
typically carpeted floors), a wood-burning fireplace, a refrigera-
tor with an extra large freezer, and extensive wiring to support
a special home entertainment system. We improve the cost
estimate for this house by factoring in the additional costs of
these extras.

Now, suppose we want our software cost estimate to factor
in software requirements which are not included as functional
requirements in the IFPUG Counting Practices Manual. Let us
consider certain requirements within the following categories
and their subcategories. These are from the SNAP Assessment
Practices Manual (refer to Table 2).

In this paper, we define these kinds of software requirements
as “non-functional” requirements because they are not included
in the ISO standard function point methodology in the IFPUG
Counting Practices Manual yet require additional work effort
to develop. We want to assess the size of these non-functional
requirements for applications. We also want to know if non-
functional size statistically correlates to the corresponding
work effort—like function points do. This was the fundamental
paradigm of the SNAP beta test.

We want to base the beta test analytics on statistical meth-
ods. We include the notions of random sampling, regression
models, the F test, p-values, the Runs test, and the Spearman
test. Basic Statistics books (for example, [8]) treat these. The
next paragraphs will discuss the intended testing analytics.

For the beta test, random sampling means that we collect
SNAP sizes from a wide variety of applications across the world.
As much as possible with the resources we have, we want to
have a sample that represents the software development industry.

Regression is a way to find the correlation between two
variables. In this beta test, we want to determine if there is cor-
relation between the SNAP sizes of the applications and their
corresponding work efforts. We believe that as the SNAP size
increases, the work effort to build those SNAP sizes should also
steadily increase.

Statisticians often look for several indicators to measure the
degree of strength of the relationship within a set of two vari-
ables, in this case, the SNAP size and corresponding work ef-
fort. If there is causation, then one indicator (in this case) would
be the degree to which SNAP size accounts for the amount of

Data Operations Technical Environment
Data entry validations Multiple platforms
Extensive logical and mathematical operations Database technology
Data formatting Batch process
Internal data movement
Delivering added value to users by data
configuration

Interface Design Architecture
User interface methods Mission critical/real time systems
Help methods Component based software
Multiple input methods Multiple input/output interfaces
Multiple output methods

Table 2

CrossTalk—July/August 2013 23

25th Anniversary issue

Table 3

work effort. This is measured by the r2 statistic. For example
(assuming causation), if our data’s r2 is measured to be .75, then
we conclude that SNAP size accounts for 75% of the reason for
the work effort.

Another statistic is the associated p-value for this, also called
“Significance F” in Excel. The p-value is the probability that we
are wrong in concluding that SNAP size is correlated to work
effort. If the p-value is .05, then we are 5% sure that we are
wrong in concluding such a correlation, or put another way, we
are 95% sure that we have statistical significance.

There are some technical assumptions in the standard regres-
sion process. One is that the data points are randomly scattered
about the regression line. We can test for this using the Runs
test, and we are comfortable that the model passes the Runs
test if its p-value is below .05.

We also want to test for correlation using the Spearman test.
This is a nonparametric test for rank correlation and makes no
technical assumptions about the distribution of the data, other
than it is randomly scattered about the regression line. This is a
“worst case scenario” test we use should we have doubts about
the validity of the standard regression test.

The final statistical test is for compliance with Benford’s
Law. Benford’s Law is an interesting statistical test. Software
development is a human stimulus and response activity. Part of
the overall stimulus for developing software is the need for the
non-functional requirements. The response is the number of
SNAP points generated. If this occurs, then we can look at the
leading digits of the SNAP size. For example, if the SNAP size is
483, then we would consider the leading digit of “4.” Benford’s
Law says that in these stimulus and response situations, the
distribution of the leading digits is logarithmic, as in the table
below, i.e., 30.1% of the SNAP sizes should start with the num-
ber “1,” 17.6% of the sizes should start with “2,” and so forth until
we should measure “9” as the leading digit in about 4.6% of the
SNAP sizes [9].

First Digit Percentage of
Occurrences

1 31.10%
2 17.60%
3 12.50%
4 9.70%
5 7.90%
6 6.70%
7 5.80%
8 5.10%
9 4.60%

This compliance with Benford’s Law happens with function
points. A study presented at the 2009 Fourth International Soft-
ware Measurement & Analysis conference [10] showed that for
a large internationally collected sample of function point counts
(more than 3,000 function point counts from ISBSG, Victoria,
Australia), their leading digits followed the distribution predicted
by Benford’s Law almost exactly.

Although the SNAP sample will be much smaller, we hope to
see good convergence towards Benford’s Law.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6 7 8 9

Pr
op

or
tio

n
of

 O
cc

ur
re

nc
es

First Digit of Function Point Count

ISBSG FUNCTION POINT COUNT LEADING DIGIT V. PREDICTED BY BENFORD'S LAW
Leading Digit Data Used with Kind Permission of ISBSG (ISBSG.org)

Predicted by Benford's Law Actuals from ISBSG Data

Research Design and Methodology
The purpose of this beta test was to repeat and extend the

spirit of Dr. Allan Albrecht’s statistical analysis of the early
function point methodology for the SNAP methodology. Dr.
Albrecht’s research showed that software size measured in
function points correlated with work effort for the applications
tested. In a similar manner, based on data collected from the
beta test, our research will hopefully determine the degree to
which SNAP sizes correlate with corresponding work effort.
Here is our research design and methodology.

Use version 2.0 of the SNAP manual as the basic reference.
Develop a standard SNAP data collection spreadsheet,

largely based on last year’s spreadsheet. This new spreadsheet
had four worksheets:

1.	“Basic Instructions” worksheet, which provides detailed
instructions for data collection for the SNAP counter.

2.	“Application Data” worksheet, for entering descriptive data.
3.	“SNAP Counting Sheet,” for entering the SNAP points. This

worksheet permits the SNAP counter to enter only basic data per
SNAP item, such as “DETs,” “FTRs,” “person-hours,” and other
data described by the SNAP training. The worksheet then auto-
matically calculates SNAP points. All calculation cells are locked.

4.	“Recap” worksheet, which automatically totals the SNAP
sizes and work effort.

Issue a call for volunteer SNAP counters, and train them. This
training will be done both using written materials (primarily the
SNAP Assessment Practices Manual) and by telephone. The
counters will choose the applications to size. Hopefully, this call
for volunteers will result in a wide variety of countries repre-
sented and application types chosen.

Conduct all SNAP sizing at the application boundary level—
“application boundary” as defined in the IFPUG Counting
Practices Manual.

Collect at least 30 applications’ worth of SNAP sizes with
corresponding work effort in person-hours. This is to hopefully
ensure a statistically large sample size.

Figure 1

24 CrossTalk—July/August 2013

25th Anniversary issue

If corresponding function point and work effort data can also be
collected, then so much the better. This permits additional research.
However, such function point counting data is considered optional.

Collect application descriptive data such as types of applications,
types of industry, types of software, etc. This data may be used to
help improve correlations. However, maintain source confidentiality.

Conduct the beta test throughout August and early September
2012. During the beta test, after counters finish with individual
application SNAP sizings, they are to email their data collection
spreadsheets to IFPUG. These data sheets will be then “cleaned”
of any source information to maintain confidentiality, and then will
be forwarded to one of several members of the SNAP team who
will perform a “quality control” of the data collection.

 As the SNAP data pass “quality control,” they will be then
forwarded on for statistical analysis.

The beta test analytics will consist of trying to determine the
degree of statistical significance using the following tests. First,
we will test the data plotting the SNAP sizes of the applica-
tions on the x-axis as the independent variables, and the effort
expended on the y-axis as the dependent variables. We will use
simple linear regression, and especially look at the r2, what Excel
calls “Significance F” (which is the p-value of the corresponding
F test), and the p-values of the coefficients of the regression
line. We will check for the appropriateness of testing for regres-
sion using regression through the origin. We will conduct the
Runs test and Spearman test, and also test for convergence to
Benford’s Law. We will also experiment with changing weighting
factors and other aspects of SNAP to try to both improve cor-
relation and its degree of realism.

Presentation and Analysis of Data
We collected data from a wide variety of applications. This

ensured that the sample was as close to random as reasonably
possible. We had SNAP sizes for 58 applications usable for the
part of the test correlating SNAP sizes with work effort, and an
additional 14 SNAP sizes usable for the Benford’s Law test (but
did not have work effort data).

Data was collected from the following countries: Brazil, China,
France, India, Italy, Mexico, Poland, Spain, UK, and the USA. We
collected data from the following industries: Aerospace, Auto-
motive, Banking, Government, Fast Moving Consumer Goods,
Financial Services, Insurance, Manufacturing, Systems Integra-
tors and Consulting, Telecommunication, and Utilities.

After reviewing the data, 58 data points (representing 58 soft-
ware applications) had sufficient SNAP size and work effort data
for further analysis. The first statistical test was a simple linear
regression analysis for 58 applications with the SNAP sizes on
the x-axis, and the corresponding work efforts in person-hours on
the y-axis. The graph below shows the results of this regression.
NOTE: the actual work effort hours are not shown on the y-axis
of the forthcoming graphs; we do not want to imply that the pro-
ductivity rate found in this beta test should necessarily be used as
a benchmark—we feel that this is premature at this point.

The r2 for this analysis is .33, which basically means that 33%
of the reason for the work effort was due to the SNAP size.

A closer analysis of the graph (and Excel regression tables)
shows that the trendline crosses the effort axis at about 100

person hours. In theory, this means that if there were zero SNAP
points, then the corresponding work effort should be about 100
person hours. This is not reasonable–if there are zero SNAP
points then the work effort should also be zero. Therefore, we up-
grade the analysis and use a standard technique called “regres-
sion through the origin.” This forces the trendline through (0,0).
This improves the common sense test and increases the r2 to .41.

In reviewing the raw data, three applications contained large
quantities of Help features. These applications had productivity
rates, according to the current version of the model, that were
roughly 10 times higher than the other 55 applications. This
led us to believe that we may need to reformulate the Help
Methods (subcategory 2.2) portion of the SNAP manual. This is
an area for future research, so we removed these three applica-
tions from the data set. This improved the r2 from .41 to .66. We
later removed seven other applications that counted some Help
features, to maintain consistency.

Also, we changed the weighing factors for subcategory 1.5
“Delivering Value Added to Users through Data Configuration”

Figure 2

Figure 3

CrossTalk—July/August 2013 25

25th Anniversary issue

by changing the weights for low, average, and high from 3-4-6
to 6-8-12. This improved the model’s r2 to .89, with a corre-
sponding Significance F of 1.7 * 10-23.

To test the requirement that the data points in this model
must be randomly scattered about the regression line, we
conducted the Runs test. There were 19 runs in the data, which
compares favorably with the theoretically optimal 19.96 runs.

We ran the Spearman test for rank correlation. This test pro-
duced a rank correlation of .85, with an associated confidence
of statistical significance of greater than 99% (p-value <.0001).

The final results of this analysis are on the following viewgraph
(refer to Figure 4).

We tested the final version of the results for compliance with
Benford’s Law. In terms of software development, Benford’s
Law says that the leading digits in a large portfolio of SNAP
sizes should be distributed as in Table 3, repeated below. For
example, in a large number of SNAP sizes, about 30.10% of the
SNAP sizes should have a leading digit of “1,” such as sizes of
15, 139, or 1,728.

Figure 4:
n = 48 r2 = .89 Significance F = 1.7 * 10-23 Spearman = .85 Runs = pass

Figure 5

First Digit Percentage of
Occurrences

1 31.10%
2 17.60%
3 12.50%
4 9.70%
5 7.90%
6 6.70%
7 5.80%
8 5.10%
9 4.60%

Table 3

Figure 5 shows the SNAP leading digit distribution from the
beta test. We used 65 SNAP sizes for this analysis. In general,
Benford’s Law seems to converge rather slowly, i.e., it requires
a very large sample size to “pure out.” This SNAP sample size
is much smaller than the ISBSG sample size, so the degree of
compliance is markedly less; however, we appear to be converg-
ing nicely.

Conclusions
We believe that the SNAP Assessment Practices Manual 2.0

has passed the beta test.
a.	The test was based on very good sampling techniques
b.	The data points are randomly scattered about the 	

	 regression line, as shown by the Runs test
c.	The regression r2 for 48 projects was .89
d.	The Spearman test correlation was .85
e.	We are over 99% sure that both tests are

	 statistically significant
f.	The distribution of the first digits of 65 SNAP sizes is 	

	 converging nicely towards Benford’s Law

We recommend that the SNAP procedure (with the excep-
tion of Help Methods subcategory 2.2) is ready for use by the
industry, and is ready for further research.

IFPUG has formed a Non-functional Sizing Standards Com-
mittee, similar to the Functional Sizing Standards Committee.
This committee will continue to develop the SNAP process, en-
courage SNAP research, develop SNAP training, and maintain
the SNAP Assessment Practices Manual.

Areas For Future Research

One possible source of data collection error during the beta
test was the experience of the SNAP counters. This was their first
use of the SNAP Assessment Practices Manual 2.0. Consistency
has been tested for function point counters with very favorable
results. Repeat similar consistency tests for SNAP counters after
there is much SNAP counting experience in the field.

Continue to experiment with reasonably varying the values
of the factors for each subcategory’s low, average, and high
complexity weights to improve the correlation between SNAP
sizes and work effort.

Continue to research the Help Methods, subcategory 2.2.	

26 CrossTalk—July/August 2013

25th Anniversary issue

Charley Tichenor is the newest mem-
ber of the SNAP team, joining in the
Fall of 2011 and serving primarily as
the team’s Statistician. He has been
a member of IFPUG since 1991, and
was certified as a Certified Function
Point Specialist in 1994 and 1997. He
has a Bachelor of Science Degree in
Business Administration from the Ohio
State University, a Master of Business
Administration degree from Virginia
Tech, and a Ph.D. in Business from
Berne University.

Phone: 703-901-3033
E-mail: charles.tichenor@dsca.mil

ABOUT THE AUTHOR

REFERENCES
1.	 Jones, Capers, “Sizing Up Software,” Scientific American, a division of Nature 			
	 America, Inc., December 1998.
2.	 International Function Point Users Group (IFPUG), Software Non-functional
	 Assessment Process Manual, (now in version 2.1), Princeton Junction, New Jersey,
	 USA 08550, 2012.
3.	 Jones, Capers, “Software Sizing During Requirements Analysis,” Modern Analyst,
	 retrieved November 5, 2012 from <http://www.modernanalyst.com/Resources/
	 Articles/tabid/115/articleType/ArticleView/articleId/512/Software-Sizing-During-
	 Requirements-Analysis.aspx>, copyright 2008 by Capers Jones & Associates LLC;
	 all rights reserved.
4.	 International Function Point Users Group (IFPUG), Counting Practices Manual (now
	 in version 4.3), Princeton Junction, New Jersey, USA 08550, 2009.
5.	 ISO. “ISO/ IEC 20926:2009 Software and Systems Engineering -- Software
	 Measurement -- IFPUG Functional Size Measurement Method 2009,” retrieved
	 November 5, 2012 from <http://www.iso.org/iso/fr/iso_catalogue/catalogue_tc/
	 catalogue_detail.htm?csnumber=51717>.
6.	 Dekkers, Carol, “Musings About Software Development,” retrieved November 5,
	 2012 from <http://caroldekkers.blogspot.com/>, 2008.
7.	 Albrecht, Allan, “Measuring Application Development Productivity,” IBM, 1977.
8.	 Walpole, R. E., & Myers, R., Probability and Statistics for Engineers and Scientists
	 Third Edition, New York, New York, Macmillan Publishing Company, a division of
	 Macmillan, Inc., 1985.
9.	 Davis, Bobby, & Tichenor, Charley, “The Applicability of Benford’s Law to the
	 Buying Behavior of Foreign Military Sales Customers,” Global Journal of Business
	 Research, The Institute for Business and Finance Research, (volume 2, 2008).
10.	Tichenor, Charley, “Why Function Point Counts Comply with Benford’s Law,”
	 presented at the Fourth International Software Measurement & Analysis
	 conference, Chicago, IL, 2009.

After a statistically large number of applications have
been counted for both function points and SNAP points,
conduct research to determine if function points and
SNAP points can be combined into a single metric, which
correlates to the combined work effort to develop both. Try
to combine them like real numbers can be combined with
imaginary numbers to produce the complex numbers; try
other ideas.

Using a large sample from the ISBSG database, function
point counts were tested for compliance with Benford’s
Law. This almost perfect compliance gave good statistical
indication for the soundness of the underlying mathemati-
cal structure of function points. After completing a larger
number of SNAP sizings (probably over 100), continue
repeating this research by testing SNAP sizes for compli-
ance with Benford’s Law.

Comments:
This paper is written on behalf of the IFPUG SNAP team.

The team developed the SNAP process and published the
130 page “Software Non-functional Assessment Process
(SNAP) Assessment Practices Manual,” now in version 2.1.
The team conducted the version 2.0 beta test to include its re-
search design, the call for SNAP assessors, their training, and
analysis of the test results. The team also developed a two-day
workshop to introduce the Assessment Practices Manual at
the seventh International Software Measurement & Analysis
conference in Phoenix, AZ in October 2012.

The SNAP Project Manager and IFPUG Board Member is
Christine Green. The IFPUG Non-functional Sizing Stan-
dards Committee Chair is Talmon Ben-Cnaan. Other SNAP
team members were Wendy Bloomfield, Steve Chizar, Peter
R. Hill, Kathy Lamoureaux, Abinash Sahoo, Joanna Soles,
Roopali Thapar, Luc Vangrunderbeeck, Jalaja Venkat, and
Charlene Zhao.

